
EPFL STI IMX LMOM 
MXG 037, Station 12 
CH-1015 Lausanne 
 

Dr. Daniel Görl 
daniel.gorl@epfl.ch 
lmom.epfl.ch 

School of Engineering 
Institute of Materials 
Laboratory of Macromolecular 
and Organic Materials 
Suite de votre unité 
 

 

 

School of Engineering 
Institute of Materials 
Laboratory of Macromolecular 
and Organic Materials 

1 

   

Polymer Science 2024/25 

Course Notes of Chapter 4.2 
 

Table	of	Contents	
1.	Introduction:	.........................................................................................................................................	1	
1.1	What	is	Viscoelasticity?	....................................................................................................................................................	1	
1.2	Importance	of	Viscoelasticity	.........................................................................................................................................	2	

1.3	Phenomenological	Approach	to	Viscoelasticity	.....................................................................................................	2	

2.	Linear	Viscoelasticity	.........................................................................................................................	3	
2.1	Basic	Viscoelastic	Functions	...........................................................................................................................................	3	
2.2	Principle	of	the	Boltzmann	Superposition	...............................................................................................................	3	

2.3	Dynamic	Measurement	Techniques	............................................................................................................................	4	

2.4	Simple	Phenomenological	Models	...............................................................................................................................	6	

2.5	Non-Linear	Viscoelasticity	..............................................................................................................................................	9	

3.	Time-Temperature	Equivalence	....................................................................................................	9	
3.1	Time-Temperature	Superposition	...............................................................................................................................	9	
3.2	The	Williams-Lendel-Ferry	(WLF)	Equation	..........................................................................................................	9	
3.3	General	Comments	on	the	WLF	Approach	............................................................................................................	10	

4.	Summary	..............................................................................................................................................	10	
 
	
	

1.	Introduction:	Phenomenological	Approach	to	Viscoelasticity	

1.1	What	is	Viscoelasticity?	

At	 small	 deformations	 and	 at	 temperatures	 far	 from	 phase	 transitions,	 elastic	 solids	
(elastomers,	 glasses,	 crystals)	 follow	Hooke's	 law,	𝜎 = 𝐸𝜀,	 where	 the	 elastic	modulus,	𝐸,	 is	
approximately	independent	of	the	time,	𝑡,	and	the	strain	rate	𝑑𝜀/𝑑𝑡.	In	contrast,	most	polymers	
show	 a	 pronounced	 viscoelastic	 behavior	 close	 to	 their	 thermal	 transitions,	 i.e.,	 their	
mechanical	properties	are	strongly	influenced	by	𝑡	and	𝑑𝜀/𝑑𝑡	over	wide	temperature	ranges.	

The	diagram	in	Slide	231	shows	the	small	deformation	behavior	of	an	amorphous	polymer	over	
a	wide	range	of	temperatures	and,	compared	to	previous	versions,	has	been	complemented	by	
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that	of	a	semi-crystalline	polymer	and	that	of	an	elastomer.	In	the	case	of	the	semi-crystalline	
polymer,	 we	 always	 observe	 a	 drop	 in	modulus	 around	Tg	 associated	with	 the	 amorphous	
regions.	 The	 crystalline	 part	 remains	 solid	 up	 to	 the	melting	 temperature,	 when	 a	 further	
decrease	of	the	modulus	occurs.	If	the	melting	temperature	is	higher	than	the	rubbery	plateau	
of	a	corresponding	amorphous	polymer,	the	rubbery	regime	can	no	longer	be	established.	The	
existence	of	 a	 rubbery	plateau	 in	 semi-crystalline	polymers	 requires	 therefore	 a	 fairly	 high	
molar	mass.	In	the	case	of	an	elastomer,	the	molar	mass	is	effectively	infinite,	and	the	rubbery	
plateau	extends	up	to	the	degradation	temperature.	

We	 recognize	 that	 the	 behavior	 of	 polymers	 around	 transitions	 such	 as	 the	 glass	
transition	or	the	edge	of	the	rubbery	plateau	is	strongly	dependent	on	temperature	and	
time.	 Indeed,	 we	 observe	 a	 qualitatively	 similar	 behavior	 when	 the	 temperature	
increases	 for	 a	 fixed	 measurement	 speed,	 or	 the	 time	 increases	 (or	 the	 frequency	
decreases)	 at	 a	 constant	 temperature.	 This	 phenomenon	 is	 called	 "time-temperature	
equivalence".	So,	if	we	replaced	the	T	axis	of	the	diagram	on	Slide	231	by	an	lnt	axis,	the	curves	
remain	qualitatively	similar,	although	it	is	impossible	to	cover	a	sufficiently	large	time	range	to	
reproduce	the	latter	behavior	in	the	laboratory	during	creep	measurements.	We	wonder	later	
whether	 it	 is	 possible	 to	 exploit	 the	 time-temperature	 equivalence	 quantitatively	 in	
order	 to	 predict	 the	 long-term	 behavior	 of	 a	 polymer.	 We	 find	 an	 analogy	 in	 dynamic	
measurements	(Section	2.3),	except	that	an	increase	in	frequency	is	equivalent	to	a	decrease	in	
effective	measurement	time	and	the	curves	are	therefore	reversed	(Slide	260).	

1.2	Importance	of	Viscoelasticity	

We	must	therefore	take	the	effect	of	time	or	frequency	in	practical	applications	of	polymers	into	
account,	as	well	as	that	these	effects	are	very	sensitive	to	temperature.	The	examples	given	on	
Slides	232	and	233	are	illustrative	but	not	exclusive.	An	engineer	is	obviously	concerned	by	
long-term	properties	(creep,	fatigue,	etc.):	parts	intended	for	construction,	for	example,	often	
have	to	last	for	more	than	thirty	years.	Properties	involving	speed	or	very	high	frequencies	
are	also	very	 important	 for	applications	comprising	vibrations,	alternating	electric	 fields,	or	
shock	absorption.	In	addition,	energy	dissipation	associated	with	viscoelastic	materials	can	
lead	to	significant	overheating	and	failure	of	an	article.	Finally,	viscoelasticity	is	essential	for	
polymer	processing	such	as	fiber	spinning	or	blow	molding	of	plastic	bags.	

1.3	Phenomenological	Approach	to	Viscoelasticity	

This	 week	 we	 will	 focus	 on	 simple	 mechanical	 models	 based	 on	 linear	 viscoelasticity	 and	
different	 linear	combinations	of	elastic	springs	and	dashpots	(dampers)	 that	 follow	Hooke's	
and	Newton's	law,	respectively.	They	are	phenomenological	models	trying	to	reproduce	the	
observed	phenomena	rather	than	to	interpret	them	in	terms	of	the	fundamental	physics	
of	 the	 system	 (a	 polymer	 is	 obviously	 not	 composed	 of	 springs	 and	 shock	 absorbers).	
Phenomenological	approaches	 to	nonlinear	viscoelasticity	will	be	briefly	mentioned	but	not	
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relaxation	under	tension: E(𝑡) =
𝜎(𝑡)
𝜀!

												relaxation	under	shear: G(𝑡) =
𝜎(𝑡)
𝛾!

	

creep	under	tension: D(𝑡) =
𝜀(𝑡)
𝜎!

											creep	under	shear: J(𝑡) =
𝛾(𝑡)
𝜎!

	

dealt	with	explicitly,	and	we	will	discuss	the	molecular	approach	towards	viscoelasticity	next	
week.	

2.	Linear	Viscoelasticity	

2.1	Basic	Viscoelastic	Functions	

Slide	237	qualitatively	shows	the	influence	of	time	on	stress	and	strain	for	different	type	of	tests	
(creep	 at	 constant	 stress,	 relaxation	 at	 constant	 strain,	 simple	 tension	with	 constant	 strain	
rate).	"Static"	tests	such	as	relaxation	and	creep	allow	us	to	define	viscoelastic	functions	for	
the	two	main	modes	of	stress,	tension	and	shear:		
	
	

               (1) 
	

E(t)	and	G(t)	are	moduli	and	D(t)	and	J(t)	are	compliances.	Those	are	viscoelastic	functions	and	
they	are	written	in	straight	characters	to	not	confuse	them	with	Young's	modulus,	E,	etc.,	which	
does	 not	 depend	 on	 t.	 (For	 a	Hookean	 solid,	E	 =	 1/D,	 but,	 in	 general,	 E(t)	≠	1/D(t)).	 If	 the	
viscoelastic	 functions	 are	 independent	 of	 the	 stress	 and	deformations,	 one	 speaks	 of	
linear	viscoelasticity.	

2.2	Principle	of	the	Boltzmann	Superposition	

The	deformation	or	stress	of	a	viscoelastic	material	following	an	arbitrary	loading	history	is	not	
defined	by	an	instantaneous	stress	or	strain,	unlike	a	linear	elastic	solid,	where	it	is	enough	to	
know	the	stress	to	calculate	the	strain	(or	vice	versa).	

In	a	linear	viscoelastic	material,	according	to	the	principle	of	superposition	of	Boltzmann,	
the	state	of	deformation	or	stress	depends	on	the	history	of	all	the	stresses	applied	to	
the	material.	 Each	 new	 load	 (strain)	 applied	 independently	 contributes	 to	 the	 final	 strain	
(stress).	So,	if	we	know	the	dependence	of	the	modulus	or	the	compliance	with	t,	we	can	hope	
to	 calculate	 the	 stress	 or	 the	 strain	 for	 a	 history	 of	 deformation	 or	 arbitrary	 stresses.	 The	
material	keeps	a	“memory”	of	all	stresses	(or	deformations)	it	has	undergone.	

To	illustrate	how	this	works,	we	will	consider	the	case	of	tensile	creep	experiment,	where	we	
apply	a	stress	and	look	at	the	evolution	of	the	strain.	However,	instead	of	keeping	the	stress	
constant	throughout	the	test,	we	will	impose	a	stress	Δσo	at	t	=	0,	Δσ1	at	t	=	t1,	Δσ2	at	t	=	t2	and	
so	on	(Slide	238).	According	to	Equation	1,	the	strain	for	a	constant	Δσ	stress	applied	to	t	=	0	is	

	

Thus,	according	to	Boltzmann's	superposition	principle,	at	a	time	t	>	t2:	

𝜀(𝑡) = D(𝑡)Δ𝜎 
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This	is	valid	for	any	function	D(t)	which	is	independent	of	σ	and	𝜀,	so	that	in	general	

	
               (2). 
	

In	the	continuous	limit,	we	replace	Δσn	by	𝑑𝜎,	and	we	obtain	

	
               (3),	

where	we	use	−∞	instead	of	0	to	take	all	the	mechanical	history	that	the	sample	would	have	
experienced	since	its	inception	into	account.	That	said,	in	practice,	we	take	0	as	the	lower	limit,	
and	admit	that	we	are	dealing	with	a	"blank"	sample	at	the	start	of	the	experiment.	

For	the	same	reason,	we	obtain	for	a	tensile	experiment,	where	we	vary	𝜀	(relaxation),		

	

               (4).	

We	will	see	the	usefulness	of	these	formulas	in	section	2.4.	

2.3	Dynamic	Measurement	Techniques	

In	 dynamic	 mechanical	 analysis	 (DMA),	 a	 sample	 is	 subjected	 to	 periodic	 stress	 or	
deformation,	 generally	 of	 sinusoidal	 form,	 with	 an	 angular	 frequency	 w	 [rad/s].	 The	
measurement	configuration	depends	on	the	nature	of	the	material.	For	example,	deformation	
under	tension	and	bending	can	be	conveniently	applied	to	rather	solid	materials,	while	a	shear	
between	 two	 plates	 is	 often	 used	 for	 rather	 liquid	 substances	 (we	 are	 then	 talking	 about	
"rheological"	measurements	rather	than	DMA,	but	this	distinction	is	arbitrary).		

The	possibility	of	carrying	out	the	measurements	by	controlling	the	stress	or	the	deformation	
depends	on	the	instrument.	In	controlled	strain,	

               (5),	

	
and	 the	 stress	 is	 typically	measured	 as	 a	 function	 of	 the	 temperature	T	 (constant	w)	 or	 as	
function	of	w	(constant	T).	The	stress	(in	shear,	t		is	sometimes	used	for	the	stress)	is	given	by	

               (6).	

	

𝜀(𝑡) = D(𝑡)Δ𝜎! + D(𝑡 − 𝑡")Δ𝜎" + D(𝑡 − 𝑡#)Δ𝜎#… 

𝜀(𝑡) = ED(𝑡 − 𝑡$)Δ𝜎$
$%!

 

𝜀(𝑡) = F D(𝑡 − 𝜉)
Δ𝜎
𝑑𝜉 dξ

&

'(
 

𝜎(𝑡) = F E(𝑡 − 𝜉)
Δ𝜀
𝑑𝜉 dξ

&

'(
 

tensile: 𝜀(𝑡) = 𝜀! sin(ωt) 												shear:	𝛾(𝑡) = 𝛾! sin(ωt) 

𝜎(𝑡) = 𝜎!sin[𝜔𝑡 + 𝛿] 
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𝜎(𝑡) = 𝜎!sin[𝜔𝑡 + 𝛿] = 𝜎!(sin𝜔𝑡 cos 𝛿 + cos𝜔𝑡 sin 𝛿) 

𝜎(𝑡) = G) sin𝜔𝑡 + G)) cos𝜔𝑡 

G) =
𝜎!
𝛾!
cos 𝛿 

G)) =
𝜎!
𝛾!
sin 𝛿 

G))

G′ = tan 𝛿 

	

𝛾(𝑡) = 𝛾! cos(𝜔𝑡) = ℜ𝛾∗(𝑡) = ℜ𝛾!𝑒+,& 

𝜎(𝑡) = 𝜎! cos(𝜔𝑡 + 𝛿) = ℜ𝜎∗(𝑡) = ℜ𝜎!𝑒+(,&./) 

 

	

There	is	therefore	a	phase	shift,	𝛿,	between	the	stress	and	the	strain	(Slide	243).	

The	dynamic	modulus	and	the	loss	factor	

We	can	define	 the	 "dynamic	moduli",	 as	well	 as	 the	 "loss	 factor"	 in	 the	 following	manner	
(here,	for	a	shear	test):	

	

	
	 	

	 	

	 	

               (7),	

	

	

where	G’	and	G’’	are	respectively	the	“storage	modulus”	and	the	“loss	modulus”	(in	tension,	
we	replace	G	by	E	and	𝛾	by	𝜀).	These	quantities,	which	typically	depend	on	the	frequency	of	the	
measurement,	can	be	determined	by	DMA.	G’	reflects	the	elastic	nature	of	the	system,	i.e.	
part	of	the	stress	that	is	in	phase	with	the	strain,	and	G’’	reflects	the	viscous	character	of	
the	 system,	 that	 is	 the	 part	 of	 the	 stress	which	 is	 out-of-phase	with	 the	 strain.	 Thus,	
tan	d		is	called	the	loss	or	damping	factor	or	coefficient,	because	the	larger	it	is,	i.e.	the	
higher	G’’	in	relation	to	G’,	the	more	dissipative	the	system.1	

Indeed,	in	a	Hookean	solid,	s	is	equal	to	Gg	and	therefore	G’’	=	0.	On	the	other	hand,	in	a	
Newtonian	liquid	s		is	equal	to	hdg/dt,	or	hwg0	cos	𝜔𝑡	in	our	example.	So,	G’	=	0	and	G’’	=	hw.	
This	is	why	in	rheology,	where	we	are	interested	in	the	behavior	of	liquids,	we	tend	to	replace	
G’	and	G’’	with	𝜔h’’	and	𝜔h’	in	Equation	7,	where	h’’	and	h’	are	also	viscoelastic	functions	which	
depend	on	𝜔.	

Complex	Representation	

It	 is	 in	general	easier	 to	get	rid	of	 trigonometric	 functions	 in	calculations	by	working	 in	 the	
complex	domain	(by	convention	we	will	henceforth	use	cosines	for	the	deformation).	

	 	

               (8).	

	

 
1 When	you	deform	a	viscous	 liquid,	 the	 thermodynamic	state	of	 the	 liquid	does	not	change	
during	deformation	-	deformation	is	irreversible	and	therefore	work	is	dissipated	as	heat. 
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We	can	then	define	a	“complex	modulus”,	G*,	such	that	
	

               (9).	

	

You	will	see	the	usefulness	of	this	approach	later.	

2.4	Simple	Phenomenological	Models	

We	saw	in	Section	2.3	that	the	linear	viscoelastic	behavior	is	intermediate	between	that	of	a	
Newtonian	liquid	and	that	of	a	Hookean	solid.	In	order	to	model	the	viscoelastic	behavior	of	
polymer	materials,	we	can	try	out	linear	combinations	of	these	two	types	of	behavior,	
based	on	"springs"	and	“dashpots”	(“shock	absorber”)	(Slide	247).	

Maxwell	in	Simple	Tension	/	Relaxation	

Maxwell's	model	(Slides	249-252)	consists	of	a	Hookean	spring	of	(constant)	modulus	E	and	
a	Newtonian	dashpot	of	viscosity	h	that	are	connected	in	a	series	to	model	a	deformation	in	
tension.	This	 is	 the	 simplest	model	 to	 combine	a	 spring	and	a	dashpot,	but	nevertheless	an	
informative	model	 and,	 as	 we	will	 see	 later,	 quite	 realistic	 in	 some	 cases.	 So,	 let's	 apply	 a	
constant	deformation	𝜀!	at	t	=	0.	As	the	two	elements	are	in	series,	the	same	stress	𝜎	is	applied	
to	both:	

	 	

	 	

	

	

	

	

where	𝝉 = 𝜼/𝑬	is	the	“relaxation	time”.	So,	the	relaxation	modulus	

               (10). 

	

This	exponential	decrease	of	the	stress	(Slide	249)	is	at	least	qualitatively	similar	to	what	you	
see	when	you	do	a	relaxation	test	on	a	polymer	near	Tg.	

Maxwell	in	Dynamic	Tension	

We	will	now	try	to	predict	the	behavior	according	to	the	angular	frequency	𝜔	of	the	Maxwell's	
model	for	sinusoidal	deformation.	For	this	we	need	the	Equation	4:	

G∗ =
𝜎∗(𝑡)
𝛾∗(𝑡) =

𝜎!𝑒+(,&./)

𝛾!𝑒+,&
=
𝜎!𝑒+/

𝛾!
=
𝜎! cos 𝛿 + 𝜎!𝑖 sin 𝛿

𝛾!
= G) + 𝑖G′′ 

𝜀! = 𝜀123+$4(𝑡) + 𝜀561728&(𝑡) 			⇒ 0 = 	
𝑑𝜀123+$4
𝑑𝑡 +

𝑑𝜀561728&
𝑑𝑡  

1
𝐸
𝑑𝜎
𝑑𝑡 +

𝜎
𝜂 = 0 

𝑑𝜎
𝜎 = −

𝐸
𝜂 𝑑𝑡 ⟹

[ln 𝜎]9!
9 = −

𝐸
𝜂 𝑡 ⟹ 𝜎 = 𝜎!𝑒

':;& ≡ 𝜎!𝑒
'&< 

	

E(𝑡) =
𝜎(𝑡)
𝜀"

= 𝐸𝑒#
$
%	
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𝜎∗ = F 𝐸𝑖𝜔𝜀!𝑒
'&'=< 𝑒+,=𝑑𝜉

&

'(

= [
𝐸𝑖𝜔𝜀!𝑒

'>&'=< '+,=?

1
𝜏 + 𝑖𝜔

] =
𝐸𝑖𝜔𝜀!𝑒+,&
1
𝜏 + 𝑖𝜔

=
^1𝜏 − 𝑖𝜔_𝐸𝑖𝜔𝜀!𝑒

+,&

^1𝜏 − 𝑖𝜔_ ^
1
𝜏 + 𝑖𝜔_

=
^1𝜏 − 𝑖𝜔_𝐸𝑖𝜔𝜀!𝑒

+,&

1
𝜏# + 𝜔

#
'(

&

 

E∗ =
𝜎∗

𝜀∗ = 𝐸
𝑖𝜔 ^1𝜏 − 𝑖𝜔_
1
𝜏# + 𝜔

#
= E) + 𝑖E)) = 𝐸

𝜏#𝜔#

1 + 𝜏#𝜔# + 𝑖𝐸
𝜔𝜏

1 + 𝜏#𝜔# 

 

 

 

	

	

as	 well	 as	 the	 viscoelastic	 law	 (Equation	 10)	 that	 we	 have	 just	 established.	 The	 complex	
deformation	is	now	

	

	

So:	

	 	

	 	

	

	

	

	

               (11). 

	

We	 therefore	 found	 our	 storage	modulus	 and	 loss	modulus,	which	 strongly	 depend	 on	 the	
frequency	of	the	deformation.	We	notice,	for	example,	that	in	the	limit	where	𝜔	≪	1/𝜏,	the	so-
called	"terminal	regime",	E’	is	proportional	to	𝜔2	and	E"	is	proportional	to	𝜔	(Slides	251).	

As	 shown	 in	Slide	252,	we	can	roughly	observe	 this	behavior	 for	 simple	 systems	which	are	
characterized	by	a	single	relaxation	time,	a	constant	storage	modulus	at	the	highest	frequencies,	
a	transition	at	𝜔	≪	1/𝜏	marked	by	a	peak	of	E’’	or	G’’	and	therefore	also	of	tan	d,	and	a	terminal	
regime.	However,	 this	 remains	 too	 simple	 for	 polymers	 (Slide	 253),	where	we	 observe,	 for	
example,	a	rubbery	plateau	at	low	frequencies	(which	is	equivalent	to	the	temperature	range	
of	the	rubbery	state	according	to	the	time-temperature	superposition	principle).	

Zener	in	dynamic	tension	

In	the	Zener	model	(also	known	as	the	"standard	linear	solid")	an	EB	spring	is	put	in	series	
with	the	Voigt	model	containing	an	EA	spring	(Slide	255).	After	some	calculations,	we	find:	

	

	

               (12). 

	

𝜎(𝑡) = F E(𝑡 − 𝜉)
Δ𝜀
𝑑𝜉 dξ
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Indeed,	with	three	elements	we	can	better	simulate	the	rheological	behavior	of	a	real	polymer	
(Slide	 256).	 E’’	 always	 shows	 a	 peak	 at	 the	 glass	 transition,	 but	 E’	 tends	 towards	𝐸(	when	
𝜔	≪	1/𝜏d,	and	we	 find	the	“rubbery	plateau”	of	 the	polymer.	Note	 that	 if	EA	=	0,	 the	storage	
modulus	becomes	that	of	the	Maxwell	model:	

	

	

Generalized	models	

Instead	of	modelling	the	viscoelastic	behavior	of	a	polymer	with	Equation	12,	we	can	do	better	
by	 adding	 additional	 Voigt	 elements.	 Thus,	 in	 the	 generalized	 Voigt-Maxwell	 model	
(Slide	 257),	 we	 accumulate	 an	 arbitrary	 number	 of	 elements,	 and	 the	 behavior	 is	
described	by	a	series	of	shape	
	

               (13). 

	
And	for	the	dynamic	moduli	
	

	

               (14). 

	

	
We	can	also	use	a	continuous	expression:	
	

               (15). 

where	H(𝜏)	is	a	relaxation	time	spectrum.	Similar	expressions	exist	for	the	other	viscoelastic	
functions	as	well	as	for	the	dynamic	moduli.	It	should	be	emphasized	that	these	are	purely	
empirical	expressions.	Moreover,	their	use	is	only	justified	if	the	same	model	describes	the	
entire	viscoelastic	behavior	(relaxation,	creep,	dynamic	stress),	which	 is	not	always	verified	
experimentally	(it	is	assumed	that	the	relaxation	time	spectrum	changes	during	the	experiment	
in	these	cases,	for	example,	if	we	vary	the	temperature).	

We	also	know	relatively	simple	empirical	expressions	like	the	Cole-Cole	Equation	(Slide	257),	
which	have	the	advantage	to	rely	on	fewer	parameters,	but	this	does	not	allow	us	to	get	closer	
to	a	physical	interpretation	of	the	observed	phenomena.	

E)(𝜔) = 𝐸@ −
𝐸@

1 + 𝜏#𝜔# =
𝜏#𝜔#𝐸@
1 + 𝜏#𝜔#		 

 

𝐸! = 
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2.5	Nonlinear	Viscoelasticity	

As	 we	 have	 seen,	 at	 large	 deformations,	 which	 are	 of	 major	 importance	 for	 practical	
applications,	the	moduli	and	compliances	of	polymers	begin	to	depend	on	the	stress	and	
strain	 and	 the	 Boltzmann	 superposition	 becomes	 inapplicable.	 The	 phenomenological	
models	of	nonlinear	viscoelasticity	are	often	extensions	of	the	(mostly	empirical)	linear	models	
presented	here.	They	are	certainly	useful	to	an	engineer	but	their	interpretation	is	difficult.	This	
is	why	the	experimental	characterization	techniques	(DMA)	are	typically	applied	to	the	linear	
viscoelastic	regime.	

3.	Time-Temperature	Equivalence	

3.1	Time-Temperature	Superposition	

The	 principle	 of	 time-temperature	 equivalence	 is	 well	 established	 by	 experimental	
observations,	but	it	is	still	necessary	to	quantitatively	link	the	time-	or	frequency-dependent	
behavior	to	the	evolution	of	viscoelastic	 functions	with	temperature.	With	the	help	of	short-
term	tests	at	different	temperatures,	this	will	make	it	possible	to	reconstruct	the	behavior	over	
very	wide	ranges	of	frequency	or	time	that	are	inaccessible	in	the	laboratory.	

Already	empirically,	we	find	that	data	for	E’(w)	or	E’’(w)	(for	example,	obtained	at	different	
temperatures	above	Tg,	and	corrected	by	a	factor	rT	which	comes	from	the	expression	
for	the	modulus	of	an	elastomer	E	=	3NkT	and	which	is	often	negligible	if	the	variations	
of	 E	 are	 very	 large)	 can	 be	 superimposed	 with	 a	 curve	 obtained	 at	 a	 reference	
temperature,	Tr,	by	multiplying	w	with	a	displacement	factor	aT	(T,	Tr).	We	thus	obtain	a	
"master	curve"	for	the	behavior	at	Tr	which	covers	a	very	wide	range	of	frequencies.	

3.2	The	Williams-Landel-Ferry	(WLF)	Equation	

The	displacement	factors	wr/w	follow	the	empirical	Williams-Landel-Ferry	(WLF)	equation:	
	

               (16). 

where	C1	and	C2	are	empirical	constants.	Moreover,	if	we	take	Tg	as	the	reference	temperature,	
we	obtain	"universal"	values	for	C1	and	C2,	namely	17.44	and	51.6	K	respectively,	which	
more	or	less	describe	the	behavior	of	any	amorphous	polymer.	

Is	it	possible	to	justify	this	approach?	We	have	already	seen	expressions	for	the	temperature-
dependence	of	a	relaxation	time	in	the	context	of	the	free	volume	theory	(Chapter	4.3)	for	the	
glass	transition:	
	

               (17). 

log 𝑎J = −
𝐶"(𝑇 − 𝑇3)
𝐶# + 𝑇 − 𝑇3

 

𝜏(𝑇) = 𝜏!𝑒
K!
K'( = 𝜏!𝑒
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where	To	is	a	characteristic	temperature	of	the	material	and	Δ𝛼	is	the	difference	between	the	
thermal	expansion	coefficients	below	and	above	Tg.	Let	𝑇0	=	𝑇g	-	𝐴:	
	
               (18). 

In	general,	the	same	behavior	is	expected	at	different	T	for	equal	values	of	𝜏(𝑇)𝜔,	where	𝜏(𝑇)	is	
the	 time	 needed	 to	 activate	 a	 mechanism	 and	 𝜔-1	 is	 the	 time	 available.	 Thus	
𝑎T	=	𝜔Tg/𝜔	=	𝜏(𝑇)/𝜏(𝑇g)	and	

	

               (19). 

This	 remains	 valid	 if	 the	 transition	 is	 characterized	 by	 a	 relaxation	 time	 spectrum	with	 all	
relaxation	 times	 having	 the	 same	 dependence	 on	T.	 Even	 though	 this	 condition	 is	met,	 the	
"universal"	 constants	 of	 Equation	 16	 are	 not	 always	 very	 precise,	 and	 it	 is	 necessary	 to	
determine	them	empirically	for	each	material.	

3.3	General	Comments	on	the	WLF	Approach	

As	we	have	seen,	the	WLF	approach	is	very	useful	because	the	experimentally	accessible	range	
of	frequencies	or	time	is	limited	and	the	displacement	factors	make	it	possible	to	extend	this	
range	using	measurements	taken	at	other	temperatures	to	construct	a	master	curve.	We	can	
therefore	predict	the	creep	behavior,	for	example,	at	extremely	long	times.	

However,	even	assuming	that	the	theory	is	correct,	its	application	is	limited	to	Tg	<	T	<	Tg	+	50	K	
(approximately),	i.e.	the	temperature	range	where	the	behavior	is	strongly	influenced	by	the	
glass	transition.	If	there	is	too	much	overlap	with	other	processes	whose	relaxation	times	do	
not	 have	 the	 same	 dependence	 on	 temperature	 as	 those	 of	 the	 glass	 transition,	 the	
superposition	 becomes	 approximate	 if	 not	 impossible.	 Moreover,	 this	 approach	 cannot	 be	
applied	to	the	nonlinear	viscoelastic	behavior	in	case	of	large	deformations.	Finally,	it	can	only	
be	justified	if	all	viscoelastic	functions	superimpose.	

4.	Summary	

•	 Polymers	 are	 viscoelastic	 materials,	 their	 mechanical	 behavior	 is	 highly	 sensitive	 to	 the	
timescale	of	the	measurement.	

•	 Linear	 viscoelasticity	 may	 be	 applied	 when	 the	 deformations	 are	 small,	 allowing	 the	
application	of	simple	models	for	this	time-dependent	behavior.	

𝜏(𝑇) = 𝜏!𝑒
LM)*

A.J'J+ ,								𝜏i𝑇4j = 𝜏!𝑒
LM)*
A  

ln 𝑎J = ln 𝜏 (𝑇) − ln 𝜏 i𝑇4j =
Δ𝛼'"

𝐴 + 𝑇 − 𝑇4
−
Δ𝛼'"

𝐴  

ln 𝑎J =
𝐴'"Δ𝛼'"i𝑇 − 𝑇4j

𝐴 + 𝑇 − 𝑇4
⇒ log 𝑎J = −

𝐶"(𝑇 − 𝑇3)
𝐶# + 𝑇 − 𝑇3
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•	Time-temperature	equivalence	is	a	qualitative	feature	of	the	behavior	of	polymeric	materials.	
It	 is	 invoked	to	justify	the	practice	of	time-temperature	superposition,	which	can	be	used	to	
greatly	extend	the	time	or	frequency	range	of	measurements.	

	

	


