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1. Introduction: Phenomenological Approach to Viscoelasticity
1.1 What is Viscoelasticity?

At small deformations and at temperatures far from phase transitions, elastic solids
(elastomers, glasses, crystals) follow Hooke's law, 0 = E¢, where the elastic modulus, E, is
approximately independent of the time, ¢, and the strain rate de/dt. In contrast, most polymers
show a pronounced viscoelastic behavior close to their thermal transitions, i.e., their
mechanical properties are strongly influenced by t and de/dt over wide temperature ranges.

The diagram in Slide 231 shows the small deformation behavior of an amorphous polymer over
a wide range of temperatures and, compared to previous versions, has been complemented by
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that of a semi-crystalline polymer and that of an elastomer. In the case of the semi-crystalline
polymer, we always observe a drop in modulus around Ty associated with the amorphous
regions. The crystalline part remains solid up to the melting temperature, when a further
decrease of the modulus occurs. If the melting temperature is higher than the rubbery plateau
of a corresponding amorphous polymer, the rubbery regime can no longer be established. The
existence of a rubbery plateau in semi-crystalline polymers requires therefore a fairly high
molar mass. In the case of an elastomer, the molar mass is effectively infinite, and the rubbery
plateau extends up to the degradation temperature.

We recognize that the behavior of polymers around transitions such as the glass
transition or the edge of the rubbery plateau is strongly dependent on temperature and
time. Indeed, we observe a qualitatively similar behavior when the temperature
increases for a fixed measurement speed, or the time increases (or the frequency
decreases) at a constant temperature. This phenomenon is called "time-temperature
equivalence". So, if we replaced the T axis of the diagram on Slide 231 by an Int axis, the curves
remain qualitatively similar, although it is impossible to cover a sufficiently large time range to
reproduce the latter behavior in the laboratory during creep measurements. We wonder later
whether it is possible to exploit the time-temperature equivalence quantitatively in
order to predict the long-term behavior of a polymer. We find an analogy in dynamic
measurements (Section 2.3), except that an increase in frequency is equivalent to a decrease in
effective measurement time and the curves are therefore reversed (Slide 260).

1.2 Importance of Viscoelasticity

We must therefore take the effect of time or frequency in practical applications of polymers into
account, as well as that these effects are very sensitive to temperature. The examples given on
Slides 232 and 233 are illustrative but not exclusive. An engineer is obviously concerned by
long-term properties (creep, fatigue, etc.): parts intended for construction, for example, often
have to last for more than thirty years. Properties involving speed or very high frequencies
are also very important for applications comprising vibrations, alternating electric fields, or
shock absorption. In addition, energy dissipation associated with viscoelastic materials can
lead to significant overheating and failure of an article. Finally, viscoelasticity is essential for
polymer processing such as fiber spinning or blow molding of plastic bags.

1.3 Phenomenological Approach to Viscoelasticity

This week we will focus on simple mechanical models based on linear viscoelasticity and
different linear combinations of elastic springs and dashpots (dampers) that follow Hooke's
and Newton's law, respectively. They are phenomenological models trying to reproduce the
observed phenomena rather than to interpret them in terms of the fundamental physics
of the system (a polymer is obviously not composed of springs and shock absorbers).
Phenomenological approaches to nonlinear viscoelasticity will be briefly mentioned but not
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dealt with explicitly, and we will discuss the molecular approach towards viscoelasticity next
week.

2. Linear Viscoelasticity

2.1 Basic Viscoelastic Functions

Slide 237 qualitatively shows the influence of time on stress and strain for different type of tests
(creep at constant stress, relaxation at constant strain, simple tension with constant strain
rate). "Static" tests such as relaxation and creep allow us to define viscoelastic functions for
the two main modes of stress, tension and shear:

o(t ol(t
relaxation under tension: E(t) = —g( ) relaxation under shear: G(t) = —)E )
0 0
e(t t
creep under tension: D(t) = Q creep under shear:J(t) = ? (1)
0 0

E(t) and G(t) are moduli and D(t) and ](t) are compliances. Those are viscoelastic functions and
they are written in straight characters to not confuse them with Young's modulus, E, etc., which
does not depend on t. (For a Hookean solid, E = 1/D, but, in general, E(t) # 1/D(t)). If the
viscoelastic functions are independent of the stress and deformations, one speaks of
linear viscoelasticity.

2.2 Principle of the Boltzmann Superposition

The deformation or stress of a viscoelastic material following an arbitrary loading history is not
defined by an instantaneous stress or strain, unlike a linear elastic solid, where it is enough to
know the stress to calculate the strain (or vice versa).

In a linear viscoelastic material, according to the principle of superposition of Boltzmann,
the state of deformation or stress depends on the history of all the stresses applied to
the material. Each new load (strain) applied independently contributes to the final strain
(stress). So, if we know the dependence of the modulus or the compliance with ¢, we can hope
to calculate the stress or the strain for a history of deformation or arbitrary stresses. The
material keeps a “memory” of all stresses (or deformations) it has undergone.

To illustrate how this works, we will consider the case of tensile creep experiment, where we
apply a stress and look at the evolution of the strain. However, instead of keeping the stress
constant throughout the test, we will impose a stress Ao, at t = 0, Ao1 at t = t1, Aoz at t = t; and
so on (Slide 238). According to Equation 1, the strain for a constant Ao stress applied to t =0 is

e(t) =D(t)Ao

Thus, according to Boltzmann's superposition principle, at a time t > t;:
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e(t) = D(t)Aoy + D(t — t;)Ady, + D(t — t,)Aoy ...

This is valid for any function D(t) which is independent of o and & so that in general
£(t) = ) D(t — t)Aa, @)
n=0

In the continuous limit, we replace Aoy by do, and we obtain

dw=LD@—S€E ),

where we use —oo instead of 0 to take all the mechanical history that the sample would have
experienced since its inception into account. That said, in practice, we take 0 as the lower limit,
and admit that we are dealing with a "blank" sample at the start of the experiment.

For the same reason, we obtain for a tensile experiment, where we vary ¢ (relaxation),

G(t)=j_ E(t—f) 5 dg (4).

We will see the usefulness of these formulas in section 2.4.

2.3 Dynamic Measurement Techniques

In dynamic mechanical analysis (DMA), a sample is subjected to periodic stress or
deformation, generally of sinusoidal form, with an angular frequency @ [rad/s]. The
measurement configuration depends on the nature of the material. For example, deformation
under tension and bending can be conveniently applied to rather solid materials, while a shear
between two plates is often used for rather liquid substances (we are then talking about
"rheological” measurements rather than DMA, but this distinction is arbitrary).

The possibility of carrying out the measurements by controlling the stress or the deformation
depends on the instrument. In controlled strain,

tensile: e(t) = g, sin(wt) shear: y(t) = y, sin(wt) (5),

and the stress is typically measured as a function of the temperature T (constant @) or as
function of w (constant T). The stress (in shear, 7 is sometimes used for the stress) is given by

o(t) = gysinfwt + §] (6).
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There is therefore a phase shift, §, between the stress and the strain (Slide 243).

The dynamic modulus and the loss factor

We can define the "dynamic moduli", as well as the "loss factor" in the following manner
(here, for a shear test):

o(t) = gpsin[wt + 8] = o,(sin wt cos § + cos wt sin §)

o(t) = G'sinwt + G" cos wt
o -
G =—cosé
Yo

Op
G" =—sind — (7)
Yo ’

?=tan6 B

where G’ and G” are respectively the “storage modulus” and the “loss modulus” (in tension,
we replace G by E and y by €). These quantities, which typically depend on the frequency of the
measurement, can be determined by DMA. G’ reflects the elastic nature of the system, i.e.
part of the stress that is in phase with the strain, and G” reflects the viscous character of
the system, that is the part of the stress which is out-of-phase with the strain. Thus,
tan ¢ is called the loss or damping factor or coefficient, because the larger it is, i.e. the
higher G” in relation to G’, the more dissipative the system.!

Indeed, in a Hookean solid, o is equal to Gy and therefore G” = 0. On the other hand, in a
Newtonian liquid o is equal to ndy/dt, or nwy cos wt in our example. So, G’ =0 and G” = .
This is why in rheology, where we are interested in the behavior of liquids, we tend to replace
G’ and G” with w7’ and w7’ in Equation 7, where 7" and 7’ are also viscoelastic functions which
depend on w.

Complex Representation

It is in general easier to get rid of trigonometric functions in calculations by working in the
complex domain (by convention we will henceforth use cosines for the deformation).

]/(t) =%Yoo COS((Ut) = my*(t) = myoeiwt
o(t) = 0, cos(wt + 8) = Ro*(t) = Roye' @+ (8).

! When you deform a viscous liquid, the thermodynamic state of the liquid does not change
during deformation - deformation is irreversible and therefore work is dissipated as heat.
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We can then define a “complex modulus”, G*, such that

. a'()  0pel@tt®)  gueld g cos§ + ogisind — )
fd = - = = = l .
Y*(t) yoela)t yo )/O

You will see the usefulness of this approach later.

2.4 Simple Phenomenological Models

We saw in Section 2.3 that the linear viscoelastic behavior is intermediate between that of a
Newtonian liquid and that of a Hookean solid. In order to model the viscoelastic behavior of
polymer materials, we can try out linear combinations of these two types of behavior,
based on "springs” and “dashpots” (“shock absorber”) (Slide 247).

Maxwell in Simple Tension / Relaxation

Maxwell's model (Slides 249-252) consists of a Hookean spring of (constant) modulus E and
a Newtonian dashpot of viscosity 7 that are connected in a series to model a deformation in
tension. This is the simplest model to combine a spring and a dashpot, but nevertheless an
informative model and, as we will see later, quite realistic in some cases. So, let's apply a
constant deformation ¢, at t = 0. As the two elements are in series, the same stress ¢ is applied
to both:

d&spri de
— _ pring dashpot
& = gspring (t) + edashpot(t) >0= +

dt dt
1d0+0_
Edt n
da_ " 3 _ B t
?———dt=>ao[lna]———t=a—aoe " =gpe T

where T = n7/E is the “relaxation time”. So, the relaxation modulus

E(t) = %t) — Ee (10).

This exponential decrease of the stress (Slide 249) is at least qualitatively similar to what you
see when you do a relaxation test on a polymer near T.
Maxwell in Dynamic Tension

We will now try to predict the behavior according to the angular frequency w of the Maxwell's
model for sinusoidal deformation. For this we need the Equation 4:
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o(t) = j B(t— §) 2 dg

d§

as well as the viscoelastic law (Equation 10) that we have just established. The complex
deformation is now

*

* iwt & ; iwt
£ = gpelt > — = jweye
dt
So:
Lo _t=¢
0*=| Eiwge t el®%d¢
—00

t

I o . 1 . . ; 1 . . w
Eiweye ( T ”"5) Eiweyei®t (; - lw) Eiwey et (? - lw) Eiweye'™
N 1 A2 1,
. T Tw T (;—lw)(?+lw) T—2+w
E* = (_ o) i = E— T
S - 1 2 - L - 1 +T2(U2 l 1 +T2(J)2 (11)
7z +w

We therefore found our storage modulus and loss modulus, which strongly depend on the
frequency of the deformation. We notice, for example, that in the limit where w « 1/7, the so-
called "terminal regime", E’ is proportional to w? and E" is proportional to w (Slides 251).

As shown in Slide 252, we can roughly observe this behavior for simple systems which are
characterized by a single relaxation time, a constant storage modulus at the highest frequencies,
a transition at w < 1/t marked by a peak of E” or G” and therefore also of tan ¢, and a terminal
regime. However, this remains too simple for polymers (Slide 253), where we observe, for
example, a rubbery plateau at low frequencies (which is equivalent to the temperature range
of the rubbery state according to the time-temperature superposition principle).

Zener in dynamic tension

In the Zener model (also known as the "standard linear solid") an Eg spring is put in series
with the Voigt model containing an Ex spring (Slide 255). After some calculations, we find:

’ EB - EOO " EB - EOO
E ((l)) = EB - 2 2’ E ((l)) =Tsw 2, 2
1+ 7150 1+ 7150
_ EjEp _ n(Eg — Ew) (12).
be =g 1E, T B2
A B B
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Indeed, with three elements we can better simulate the rheological behavior of a real polymer
(Slide 256). E” always shows a peak at the glass transition, but E’ tends towards E,, when
w < 1/75 and we find the “rubbery plateau” of the polymer. Note that if E4 = 0, the storage
modulus becomes that of the Maxwell model:

Eg T2w?Ep

E'(w) = Ep — 1+ 12w? 1 + T2w?

Generalized models

Instead of modelling the viscoelastic behavior of a polymer with Equation 12, we can do better
by adding additional Voigt elements. Thus, in the generalized Voigt-Maxwell model
(Slide 257), we accumulate an arbitrary number of elements, and the behavior is
described by a series of shape

t

E(t) = Eo + ZEie_T_i (13).
T

And for the dynamic moduli

2

E'(w) = Ey, +ZE

"1+ 12w?
(14).
E" =E, Z Ei——
(@) = B + "1+ a)2
We can also use a continuous expression:
® t
E(t) = Eo +f H(t)e 7dInt
, 1@ (15).

where H(7) is a relaxation time spectrum. Similar expressions exist for the other viscoelastic
functions as well as for the dynamic moduli. It should be emphasized that these are purely
empirical expressions. Moreover, their use is only justified if the same model describes the
entire viscoelastic behavior (relaxation, creep, dynamic stress), which is not always verified
experimentally (it is assumed that the relaxation time spectrum changes during the experiment
in these cases, for example, if we vary the temperature).

We also know relatively simple empirical expressions like the Cole-Cole Equation (Slide 257),
which have the advantage to rely on fewer parameters, but this does not allow us to get closer
to a physical interpretation of the observed phenomena.
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2.5 Nonlinear Viscoelasticity

As we have seen, at large deformations, which are of major importance for practical
applications, the moduli and compliances of polymers begin to depend on the stress and
strain and the Boltzmann superposition becomes inapplicable. The phenomenological
models of nonlinear viscoelasticity are often extensions of the (mostly empirical) linear models
presented here. They are certainly useful to an engineer but their interpretation is difficult. This
is why the experimental characterization techniques (DMA) are typically applied to the linear
viscoelastic regime.

3. Time-Temperature Equivalence
3.1 Time-Temperature Superposition

The principle of time-temperature equivalence is well established by experimental
observations, but it is still necessary to quantitatively link the time- or frequency-dependent
behavior to the evolution of viscoelastic functions with temperature. With the help of short-
term tests at different temperatures, this will make it possible to reconstruct the behavior over
very wide ranges of frequency or time that are inaccessible in the laboratory.

Already empirically, we find that data for E’(®) or E” (@) (for example, obtained at different
temperatures above Tg, and corrected by a factor pT which comes from the expression
for the modulus of an elastomer E = 3NkT and which is often negligible if the variations
of E are very large) can be superimposed with a curve obtained at a reference
temperature, Ty, by multiplying @ with a displacement factor ar (7, Tr). We thus obtain a
"master curve" for the behavior at T: which covers a very wide range of frequencies.

3.2 The Williams-Landel-Ferry (WLF) Equation

The displacement factors @r/ @ follow the empirical Williams-Landel-Ferry (WLF) equation:

Cl (T - Tr)

logay = — T
BT =T AT T,

(16).
where C1 and C; are empirical constants. Moreover, if we take Ty as the reference temperature,
we obtain "universal” values for C; and C, namely 17.44 and 51.6 K respectively, which
more or less describe the behavior of any amorphous polymer.

[s it possible to justify this approach? We have already seen expressions for the temperature-
dependence of a relaxation time in the context of the free volume theory (Chapter 4.3) for the
glass transition:

Yo Aa!
1(T) = 1ye¥fm = 1yeT-To (17).
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where T, is a characteristic temperature of the material and A« is the difference between the
thermal expansion coefficients below and above T. Let To= T - A:

Aa_1 A(Z_l

T(T) = 1079,  1(T,) =19 4 (18).

In general, the same behavior is expected at different T for equal values of t(T)w, where 7(T) is
the time needed to activate a mechanism and w?! is the time available. Thus
ar= wrg/w =1(T)/7(Tg) and

nay =Int (M) —Int(T,) = 20 _A¢~
nar =Int nt (T, “ATT-T, A
A Aa (T - T,) C,(T—T,)
1 = g 1 =2 T 19).
nar A+T—-T, 8T yT-T, (19)

This remains valid if the transition is characterized by a relaxation time spectrum with all
relaxation times having the same dependence on T. Even though this condition is met, the
"universal" constants of Equation 16 are not always very precise, and it is necessary to
determine them empirically for each material.

3.3 General Comments on the WLF Approach

As we have seen, the WLF approach is very useful because the experimentally accessible range
of frequencies or time is limited and the displacement factors make it possible to extend this
range using measurements taken at other temperatures to construct a master curve. We can
therefore predict the creep behavior, for example, at extremely long times.

However, even assuming that the theory is correct, its application is limited to Ty < T < Tg + 50 K
(approximately), i.e. the temperature range where the behavior is strongly influenced by the
glass transition. If there is too much overlap with other processes whose relaxation times do
not have the same dependence on temperature as those of the glass transition, the
superposition becomes approximate if not impossible. Moreover, this approach cannot be
applied to the nonlinear viscoelastic behavior in case of large deformations. Finally, it can only
be justified if all viscoelastic functions superimpose.

4. Summary

e Polymers are viscoelastic materials, their mechanical behavior is highly sensitive to the
timescale of the measurement.

e Linear viscoelasticity may be applied when the deformations are small, allowing the
application of simple models for this time-dependent behavior.
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e Time-temperature equivalence is a qualitative feature of the behavior of polymeric materials.
It is invoked to justify the practice of time-temperature superposition, which can be used to
greatly extend the time or frequency range of measurements.
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